琥珀酸/丁二酸检测试剂盒 Succinic Acid Assay Kit 货号:K-SUCC Megazyme试剂盒

琥珀酸/丁二酸检测试剂盒

英文名:Succinic Acid Assay Kit

货号:K-SUCC

规格:20 assays (manual) / 200 assays

市场价: 3498

The Succinic Acid test kit is suitable for the specific assay of succinic acid in wine, cheese, eggs, sauce and other food products.
Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.
Suitable for manual, auto-analyser and microplate formats.

UV-method for the determination of Succinic Acid in foodstuffs,
feed, wine and other materials

Principle:
(succinyl-CoA synthetase)
(1) Succinic acid + ATP + CoA → ADP + succinyl-CoA + Pi

(pyruvate kinase)
(2) ADP + PEP → ATP + pyruvate

(L-lactate dehydrogenase)
(3) Pyruvate + NADH + H+ → NAD+ + L-lactic acid

Kit size: 20 assays (manual) / 200 (microplate)
/ 270 (auto-analyser)
Method: Spectrophotometric at 340 nm
Reaction time: ~ 6 min
Detection limit: 0.26 mg/L
Application examples:
Wine, fruit and vegetables, soy sauce, cheese, egg, egg products
and other materials (e.g. biological cultures, samples, etc.)
Method recognition:
Methods based on this principle have been accepted by EEC

Advantages

  • Very competitive price (cost per test)
  • All reagents stable for > 2 years as supplied
  • Very rapid reaction (even at room temperature)
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Extended cofactors stability
  • Suitable for manual, microplate and auto-analyser formats

Q1. Is the Succinic Acid Assay Kit (K-SUCC) suitable for measurement using cell culture media samples?

Yes, assuming that the concentration of the analyte in the sample (after sample preparation) is above the limit of detection for the kit.  It may be sufficient to use the sample directly in the assay after clarification by centrifugation / filtering followed by dilution (if required) in distilled water. 

Q2. Should the pH of the sample be adjusted even for samples in acidic media?

The pH of the assay solution after the sample is added should be the same as that of the assay buffer that is supplied with the kit.
Low sample volumes (e.g. 0.1 mL) are not likely to affect the pH of the assay solution and therefore may not require pH adjustment.
Samples above 0.1 mL are more likely to affect the pH of the assay solution and therefore the pH of these samples should be adjusted as described in the data booklet, prior to addition to the assay.

 

Q3. Sometimes a negative absorbance change is obtained for the blank samples, is this normal? Should the real value (negative absorbance change) or “0” be used in the calculation of results?

Sometimes the addition of the last assay component can cause a small negative absorbance change in the blank samples due to a dilution effect and in such cases it is recommended that the real absorbance values be used in the calculation of results.

Q4. There is an issue with the performance of the kit; the results are not as expected.

If you suspect that the Megazyme test kit is not performing as expected such that expected results are not obtained please do the following:

  1. Ensure that you have tested the standard sample that is supplied with the Megazyme test kit.
  2. Send the results of the kit standard, blank samples and the results obtained for your sample, in the relevant MegaCalc spreadsheet (if available) to Megazyme (cs@megazyme.com). Where available the relevant MegaCalc spreadsheet can be downloaded from where the product appears on the Megazyme website.
  3. State the kit lot number being used (this is found on the outside of the kit box).
  4. State which assay format was used (refer to the relevant page in the kit booklet if necessary).
  5. State exact details of any modifications to the standard procedure that is provided by Megazyme.
  6. State the sample type and describe the sample preparation steps if applicable.

Q5. The pH of my sample is low (pH ~ 3.0), do I need to adjust this before I use the sample in the kit assay?

The final pH of the kit assay after the sample is added should not change from what it should be (as stated in the kit for the assay buffer). If it does change then the sample will require pH adjustment. In most cases the sample volume being used is low relative to the final assay volume and in this case the pH of the kit assay is unlikely to be affected.

Q6. How can I work out how much sample to extract and what dilution of my sample should be used in the kit assay?

Where the amount of analyte in a liquid sample is unknown, it is recommended that a range of sample dilutions are prepared with the aim of obtaining an absorbance change in the assay that is within the linear range.
Where solid samples are analysed, the weight of sample per volume of water used for sample extraction/preparation can be altered to suit, as can the dilution of the extracted sample prior to the addition of the assay, as per liquid samples.

Q7. Can you explain, step by step, how to follow the method and perform the kit assay?

For users who are not familiar with how to use the Megazyme tests kits then it is recommended that they follow this example, e.g. D-Fructose/D-Glucose Assay kit K-FRUGL (http://secure.megazyme.com/D-Fructose-D-Glucose-Assay-Kit):

1. The kit components are listed on pages 2-3 of the kit booklet.
2. Prepare the kit reagents as described on page 3.
3. For separate measurements of glucose and fructose follow procedure A on page 4.
4. Pipette the volumes listed for water, sample, solution 1 and solution 2 into 3 mL, 1 cm pathlength cuvettes. Duplicate sample assays and duplicate blanks are recommended. Mix the contents of each cuvette by inversion (seal the cuvette using parafilm or a plastic cuvette cap – do not use a finger) then after ~3 min record the first absorbance reading of each cuvette at 340 nm (this is reading A1).
5. Then add suspension 3 and mix the contents of each cuvette by inversion. Incubate for 5 minutes then record the absorbance reading of each cuvette at 340 nm (this is reading A2). NB. It is essential that the reaction is compete. To assess this, record the absorbances at ~ 2 minute intervals and until the absorbance plateaus. A stable absorbance indicates that the reaction is complete. If the absorbance continues to increase then continue to record absorbances until it plateaus and only then record absorbance reading A2.
6. Then add suspension 4 and mix the contents of each cuvette by inversion. Incubate for 5 minutes then take absorbance reading of each cuvette at 340 nm (this is reading A3). NB. As above, assess that the reaction has completed by take subsequent readings at ~2 min intervals.
7. For simple, automated results analysis, input the absorbance readings (A1, A2, A3) for samples and blanks into the 
K-FRUGL MegaCalc.

To ensure that the assay is working, and being performed correctly it is recommend that the test is performed using the standard sample that is provided with the kit and to obtain the expected values before proceeding to test real samples.
It is recommend that new users also watch 
this video which highlights how to perform the assays.
Many of the other Megazyme test kits follow a similar format.

Q8. I have some doubts about the appearance/quality of a kit component what should be done?

If there are any concerns with any kit components, the first thing to do is to test the standard sample (control sample) that is supplied with the kit and ensure that the expected value (within the accepted variation) is obtained before testing any precious samples. This must be done using the procedure provided in the kit booklet without any modifications to the procedure. If there are still doubts about the results using the standard sample in the kit then send example results in the MegaCalc spread sheet to your product supplier (Megazyme or your local Megazyme distributor).

Q9. How much sample should be used for the clarification/extraction of my sample?

The volume/weight of sample and total volume of the extract can be modified to suit the sample. This will ultimately be dictated by the amount of analyte of interest in the sample and may require empirical determination. For low levels of analyte the sample:extract volume ratio can be increased (i.e. increase the sample and/or decrease the total extraction volume).

Alternatively, for samples with low concentrations of analyte, a larger sample volume can be added to the kit assay. When altering the sample volume adjust the distilled water volume added to the assay accordingly so that the total assay volume is not altered.

Q10. Can the test kit be used to measure biological fluids and what sample preparation method should be used?

The kit assay may work for biological fluids assuming that inositol is present above the limit of detection for the kit after any sample preparation (if required). Centrifugation of the samples and use of the supernatant directly in the kit assay (with appropriate dilution in distilled water) may be sufficient. However, if required a more stringent sample preparation method may be required and examples are provided at the following link:http://www.megazyme.com/docs/analytical-applications-downloads/biological_samples_111109.pdf?sfvrsn=2

The test kit has not been tested using biological fluids as samples because it is not marketed or registered as a medical device. This will therefore require your own validation.

Q11. Can the manual assay format be scaled down to a 96-well microplate format?

The majority of the Megazyme test kits are developed to work in cuvettes using the manual assay format, however the assay can be converted for use in a 96-well microplate format. To do this the assay volumes for the manual cuvette format are reduced by 10-fold. The calculation of results for the manual assay format uses a 1 cm path-length, however the path-length in the microplate is not 1 cm and therefore the MegaCalc spreadsheet or the calculation provided in the kit booklet for the manual format cannot be used for the micropalate format unless the microplate reader being used can.

There a 3 main methods for calculation of results using the microplate format:

  1. The easiest method is to use a microplate reader that has a path-length conversion capability (i.e. the microplater reader can detect the path-length of each well and convert the individual readings to a 1 cm path-length). This will allow values to be calculated using the MegaCalc calculation software which can be found where the product is located on the Megazyme website.
  2. Perform a standard curve of the analyte on each microplate that contains test samples and calculate the result of the test samples from the calibration curve (concentration of analyte versus absorbance).
  3. Perform a standard curve of the analyte in both the cuvette format (i.e. with a 1 cm path-length) and the 96-well microplate format and use these results to obtain a mean conversion factor between the cuvette values and the microplate values. Subsequent assays in the microplate format can then be converted from the calculated conversion factor.

Q12. Can the sensitivity of the kit assay be increased?

For samples with low concentrations of analyte the sample volume used in the kit assay can be increased to increase sensitivity. When doing this the water volume is adjusted to retain the same final assay volume. This is critical for the manual assay format because the assay volume and sample volume are used in the calculation of results.

Q13. Must the minimum absorbance change for a sample always be at least 0.1?

No. The 0.1 change of absorbance is only a recommendation. The lowest acceptable change in absorbance can is dictated by the analyst and equipment (i.e. pipettes and spectrophotometer) and therefore can be can be determined by the user. With accurate pipetting, absorbance changes as low as 0.02 can be used accurately.
If a change in absorbance above 0.1 is required but cannot be achieved due to low concentrations of analyte in a sample, this can be overcome by using a larger sample volume in the assay to increase the absorbance change and thereby increase sensitivity of the assay. When doing this the increased volume of the sample should be subtracted from the distilled water volume that is added to the assay so that the total assay volume is unaltered. The increase sample volume should also be accounted for when calculating final results. 

Q14. Can the sensitivity of the kit assay be increased?

Yes. Samples with the lower concentrations of analyte will generate a lower absorbance change. For samples with low concentrations of analyte, a larger sample volume can be used in the assay to increase the absorbance change and thereby increase sensitivity of the assay. When doing this the increased volume of the sample should be subtracted from the distilled water volume that is added to the assay so that the total assay volume is unaltered. The increase sample volume should also be accounted for when calculating final results.

<a onclick_fckprotectedatt="%20onclick%3D%22%24(‘%23119bff8e-017a-4a0b-9e85-21021ec45cd5’).toggle()%3B%22" href="javascript:void(0)&qu

Megazyme 琥珀酸检测试剂盒操作视频(K-SUCC)

Megazyme 溶解淀粉 操作视频

Megazyme 试剂盒样品前处理准备操作视频

PEG succinic acid, mPEG-OCOCH2CH2COOH Cat. No. PG1-SA-5k-1 5000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

PEG succinic acid, mPEG-OCOCH2CH2COOH

Cat. No. PG1-SA-5k-1
Specification 5000 Da
Unit Size 1 g
Price $385.00

Qty Add to Cart

Description:

Carboxylic acid functionalized methoxyl polyethylene glycol, PEG acid (mPEG-COOH) is a mono reactive PEG derivative that can be used to modify proteins, peptides and other materials via amino or other acid reactive chemical groups. PEGylation can increase solubility and stability and reduce immunogenicity of peptides and proteins. It can also suppress the non-specific binding of charged molecules to the modified surfaces.

Physical Properties:

  • Off-white/white solid or viscous liquid depends on molecule weight;
  • Soluble in regular aqeous solution as well as most organic solvents;

Storage Conditions:

  • Store at -20 0C, dessiccate. Protect from light. Avoid frequent thaw and freeze.

*Note: Structure showed here mainly represents the functional groups derived from PEG. Exact linker may not show. Contact us if you have any concern about the linker.

Documents
  • SDS
  • DataSheet

PEG succinic acid, mPEG-OCOCH2CH2COOH Cat. No. PG1-SA-5k-2 5000 Da 5 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

PEG succinic acid, mPEG-OCOCH2CH2COOH

Cat. No. PG1-SA-5k-2
Specification 5000 Da
Unit Size 5 g
Price $885.00

Qty Add to Cart

Description:

Succinic acid functionalized methoxyl polyethylene glycol, PEG acid (mPEG-COOH) is a mono reactive PEG derivative that can be used to modify proteins, peptides and other materials via amino or other acid reactive chemical groups. PEGylation can increase solubility and stability and reduce immunogenicity of peptides and proteins. It can also suppress the non-specific binding of charged molecules to the modified surfaces.

Physical Properties:

  • Form: Solid
  • Color: White
  • Solubility: Soluble in water and chloroform
  • Purity: >95%
  • PDI: <1.10

Storage Conditions:

  • Store at -20 0C. Avoid frequent thaw and freeze.

References:

Click here to see hundreds of publications from Nanocs PEGs.

Documents
  • SDS
  • DataSheet

PEG succinic acid, mPEG-OCOCH2CH2COOH Cat. No. PG1-SA-2k 2000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

PEG succinic acid, mPEG-OCOCH2CH2COOH

Cat. No. PG1-SA-2k
Specification 2000 Da
Unit Size 1 g
Price $325.00

Qty Add to Cart

Description:

Carboxylic acid functionalized methoxyl polyethylene glycol, PEG acid (mPEG-COOH) is a mono reactive PEG derivative that can be used to modify proteins, peptides and other materials via amino or other acid reactive chemical groups. PEGylation can increase solubility and stability and reduce immunogenicity of peptides and proteins. It can also suppress the non-specific binding of charged molecules to the modified surfaces.

Physical Properties:

  • Off-white/white solid or viscous liquid depends on molecule weight;
  • Soluble in regular aqeous solution as well as most organic solvents;

Storage Conditions:

  • Store at -20 0C, dessiccate. Protect from light. Avoid frequent thaw and freeze.

*Note: Structure showed here mainly represents the functional groups derived from PEG. Exact linker may not show. Contact us if you have any concern about the linker.

Documents
  • SDS
  • DataSheet

PEG succinic acid, mPEG-OCOCH2CH2COOH Cat. No. PG1-SA-1k 1000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

PEG succinic acid, mPEG-OCOCH2CH2COOH

Cat. No. PG1-SA-1k
Specification 1000 Da
Unit Size 1 g
Price $325.00

Qty Add to Cart

Description:

Carboxylic acid functionalized methoxyl polyethylene glycol, PEG acid (mPEG-COOH) is a mono reactive PEG derivative that can be used to modify proteins, peptides and other materials via amino or other acid reactive chemical groups. PEGylation can increase solubility and stability and reduce immunogenicity of peptides and proteins. It can also suppress the non-specific binding of charged molecules to the modified surfaces.

Physical Properties:

  • Form: Solid
  • Color: White
  • Solubility: Soluble in water and chloroform
  • Functional group: Acid (-COOH)
  • Purity: >95%
  • PDI: <1.10

Storage Conditions:

  • Store at -20 0C. Avoid frequent thaw and freeze.

References:

Click here to see hundreds of publications from Nanocs PEGs.

Documents
  • SDS
  • DataSheet

PEG succinic acid, mPEG-OCOCH2CH2COOH Cat. No. PG1-SA-10k 10000 Da 100 mg修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

PEG succinic acid, mPEG-OCOCH2CH2COOH

Cat. No. PG1-SA-10k
Specification 10000 Da
Unit Size 100 mg
Price $385.00

Qty Add to Cart

Description:

Succinic acid functionalized methoxyl polyethylene glycol, PEG acid (mPEG-COOH) is a mono reactive PEG derivative that can be used to modify proteins, peptides and other materials via amino or other acid reactive chemical groups. PEGylation can increase solubility and stability and reduce immunogenicity of peptides and proteins. It can also suppress the non-specific binding of charged molecules to the modified surfaces.

Physical Properties:

  • Form: Solid
  • Color: White
  • Solubility: Soluble in water and chloroform
  • Functional group: succinic acid
  • Purity: >95%
  • PDI: <1.10

Storage Conditions:

  • Store at -20 0C. Avoid frequent thaw and freeze.

References:

Click here to see hundreds of publications from Nanocs PEGs.

Documents
  • SDS
  • DataSheet

Methoxy PEG succinic acid NHS Cat. No. PG1-SSA-5k 5000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

Methoxy PEG succinic acid NHS

Cat. No. PG1-SSA-5k Methoxy PEG succinic acid NHS           Cat. No. PG1-SSA-5k     5000 Da    1 g
Specification 5000 Da
Unit Size 1 g
Price $325.00

Qty Add to Cart

Description:

N-hydroxylsuccinimide (NHS) functionalized polyethylene glycol (PEG-NHS) is an amino (-NH2) reactive PEG derivative that can be used to modify protein, peptide or any other surfaces with their available amino groups. NHS esters react with primary amine groups at pH 7~8.5 to form stable amide bonds.Compared to other PEG NHS ester derivatives, our succinimidyl carbonate (SC) functionalized mPEG-NHS offers superior reactivity and higher stability in aqueous solution. NHS esters react with deprotonated primary amines, therefore, the reaction requires neutral to basic pH values to proceed. Primary amines react with NHS esters by nucleophilic attack and NHS is released as a byproduct. Hydrolysis of the NHS-ester competes with the reaction in aqueous solution and increases with increasing pH.

Physical Properties:

  • Off-white/white solid or viscous liquid depends on molecule weight;
  • Soluble in regular aqeous solution as well as most organic solvents;

Storage Conditions:

  • Store at -20 0C, desiccate. NHS PEG tends to hydrolyze from moisture. Avoid frequent thaw and frozen.

Reaction Procedures:

Generally, a 10 to 50-fold molar excess of NHS PEG over the amount of amine-containing material results in sufficient conjugation.

Materials Required:

  • Conjugation buffer: Sodium bicarbonate 100 mM buffer, pH 8.5 or other amine-free buffer at pH 7-8.5.
  • PEG NHS stock solution: 100 mg in 1 mL conjugation buffer.
  • Washing solution: Distilled water or any aqueous buffer.

Reaction Steps:

Dissolve targeted materials in conjugation buffer. Estimate the concentration of primary amine groups on the targeted materials. Add NHS PEG stock solution to the targeted conjugation materials with the final concentration keep at least 10 mg/mL. 10~50 molar excess of PEG NHS needed for optimal conjugation; Allow mixture agitates at room temperature for 30~60 min at room temperature or 2 hours at 4 0C. Conjugates can be purified either by size exclusion chromatography or dialysis.

Documents
  • SDS
  • DataSheet

Methoxy PEG succinic acid NHS Cat. No. PG1-SSA-2k 2000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

Methoxy PEG succinic acid NHS

Cat. No. PG1-SSA-2k Methoxy PEG succinic acid NHS           Cat. No. PG1-SSA-2k     2000 Da    1 g
Specification 2000 Da
Unit Size 1 g
Price $325.00

Qty Add to Cart

Description:

N-hydroxylsuccinimide (NHS) functionalized polyethylene glycol (PEG-NHS) is an amino (-NH2) reactive PEG derivative that can be used to modify protein, peptide or any other surfaces with their available amino groups. NHS esters react with primary amine groups at pH 7~8.5 to form stable amide bonds.Compared to other PEG NHS ester derivatives, our succinimidyl carbonate (SC) functionalized mPEG-NHS offers superior reactivity and higher stability in aqueous solution. NHS esters react with deprotonated primary amines, therefore, the reaction requires neutral to basic pH values to proceed. Primary amines react with NHS esters by nucleophilic attack and NHS is released as a byproduct. Hydrolysis of the NHS-ester competes with the reaction in aqueous solution and increases with increasing pH.

Physical Properties:

  • Off-white/white solid or viscous liquid depends on molecule weight;
  • Soluble in regular aqeous solution as well as most organic solvents;

Storage Conditions:

  • Store at -20 0C, desiccate. NHS PEG tends to hydrolyze from moisture. Avoid frequent thaw and frozen.

Reaction Procedures:

Generally, a 10 to 50-fold molar excess of NHS PEG over the amount of amine-containing material results in sufficient conjugation.

Materials Required:

  • Conjugation buffer: Sodium bicarbonate 100 mM buffer, pH 8.5 or other amine-free buffer at pH 7-8.5.
  • PEG NHS stock solution: 100 mg in 1 mL conjugation buffer.
  • Washing solution: Distilled water or any aqueous buffer.

Reaction Steps:

Dissolve targeted materials in conjugation buffer. Estimate the concentration of primary amine groups on the targeted materials. Add NHS PEG stock solution to the targeted conjugation materials with the final concentration keep at least 10 mg/mL. 10~50 molar excess of PEG NHS needed for optimal conjugation; Allow mixture agitates at room temperature for 30~60 min at room temperature or 2 hours at 4 0C. Conjugates can be purified either by size exclusion chromatography or dialysis.

Documents
  • SDS
  • DataSheet

Methoxy PEG amido succinic acid NHS Cat. No. PG1-SAA-5k 5000 Da 1 g修饰性聚乙二醇

上海金畔生物科技有限公司提供各种分子量和基团修饰性聚乙二醇定制服务。

Methoxy PEG amido succinic acid NHS

Cat. No. PG1-SAA-5k Methoxy PEG amido succinic acid NHS           Cat. No. PG1-SAA-5k     5000 Da    1 g
Specification 5000 Da
Unit Size 1 g
Price $385.00

Qty Add to Cart

Description:

N-hydroxylsuccinimide (NHS) functionalized polyethylene glycol (PEG-NHS) is an amino (-NH2) reactive PEG derivative that can be used to modify protein, peptide or any other surfaces with their available amino groups. NHS esters react with primary amine groups at pH 7~8.5 to form stable amide bonds.Compared to other PEG NHS ester derivatives, our succinimidyl carbonate (SC) functionalized mPEG-NHS offers superior reactivity and higher stability in aqueous solution. NHS esters react with deprotonated primary amines, therefore, the reaction requires neutral to basic pH values to proceed. Primary amines react with NHS esters by nucleophilic attack and NHS is released as a byproduct. Hydrolysis of the NHS-ester competes with the reaction in aqueous solution and increases with increasing pH.

Physical Properties:

  • Off-white/white solid or viscous liquid depends on molecule weight;
  • Soluble in regular aqeous solution as well as most organic solvents;

Storage Conditions:

  • Store at -20 0C, desiccate. NHS PEG tends to hydrolyze from moisture. Avoid frequent thaw and frozen.

Reaction Procedures:

Generally, a 10 to 50-fold molar excess of NHS PEG over the amount of amine-containing material results in sufficient conjugation.

Materials Required:

  • Conjugation buffer: Sodium bicarbonate 100 mM buffer, pH 8.5 or other amine-free buffer at pH 7-8.5.
  • PEG NHS stock solution: 100 mg in 1 mL conjugation buffer.
  • Washing solution: Distilled water or any aqueous buffer.

Reaction Steps:

Dissolve targeted materials in conjugation buffer. Estimate the concentration of primary amine groups on the targeted materials. Add NHS PEG stock solution to the targeted conjugation materials with the final concentration keep at least 10 mg/mL. 10~50 molar excess of PEG NHS needed for optimal conjugation; Allow mixture agitates at room temperature for 30~60 min at room temperature or 2 hours at 4 0C. Conjugates can be purified either by size exclusion chromatography or dialysis.

Documents
  • SDS
  • DataSheet